Stability Bounds for Fuzzy Estimation and Control
نویسنده
چکیده
A large class of nonlinear systems can be well approximated by Takagi-Sugeno fuzzy models, for which methods and algorithms have been developed to analyze their stability and to design observers and controllers. However, results obtained for Takagi-Sugeno fuzzy models are in general not directly applicable to the original nonlinear system. In this paper, we investigate what conclusions can be drawn and what guarantees can be expected when an observer or a state feedback controller is designed based on an approximate fuzzy model and applied to the original nonlinear system. We also investigate the case when an observer-based controller is designed for an approximate model and then applied to the original nonlinear system. In particular, we consider that the scheduling vector used in the membership functions of the observer depends on the states that have to be estimated. The results are illustrated using simulation examples.
منابع مشابه
Voltage-Base Control of Camera Stabilizer Using Optimal Adaptive Fuzzy Sliding Mode Control
The camera stabilizer stabilizes the camera’s line of sight by isolating the camera from the model uncertainties, disturbances of operating environment and system movements. This paper presents a voltage-base optimal adaptive fuzzy sliding mode control for camera stabilizer. In this proposed control method, a voltage-base sliding mode controller is applied. But unfortunately, undesirable ...
متن کاملStability Analysis, Control and Modeling of Micro-grid Connected to Wind Turbine: Effect of Optimal Amplified Converter
Wind turbines as a renewable energy are installed and operated as wind farms in various locations with windy climates. Connecting micro grids to wind turbines can lead to improved power generation and transmission to distribution networks. Therefore, formulating and configuring the micro-grid connected to the wind turbine requires accurate examination of the configuration of the micro-grid wit...
متن کاملAn indirect adaptive neuro-fuzzy speed control of induction motors
This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...
متن کاملStability bounds for fuzzy estimation and control – Part I: State estimation
Analysis and observer design for nonlinear systems have long been investigated, but no generally applicable methods exist as yet. A large class of nonlinear systems can be well approximated by Takagi-Sugeno fuzzy models, for which methods and algorithms have been developed to analyze their stability and to design observers. However, results obtained for Takagi-Sugeno fuzzy models are in general...
متن کاملStability bounds for fuzzy estimation and control — Part II: Output-feedback control
A large class of nonlinear systems can be well approximated by Takagi-Sugeno fuzzy models, for which methods and algorithms have been developed to analyze their stability and to design observers and controllers. However, results obtained for Takagi-Sugeno fuzzy models are in general not directly applicable to the original nonlinear system. In this paper, we investigate what conclusions can be d...
متن کاملFuzzy Lyapunov stability and exponential stability in control systems
Fuzzy control systems have had various applications in a wide range of science and engineering in recent years. Since an unstable control system is typically useless and potentially dangerous, stability is the most important requirement for any control system (including fuzzy control system). Conceptually, there are two types of stability for control systems: Lyapunov stability (a special case ...
متن کامل